UNIVERSITA DI PISA
DIPARTIMENTO DI INFORMATICA

Data Science and Business Informatics

Project 25
Multi-class SVM with Interior-Point

Professor: Students:

Prof. Antonio Frangioni Pietro Argento
Minh Duc Pham

ANNO ACCADEMICO 2023/2024

Contents

1 Introduction
1.1 Description of the task

2 SVM Problem Formulation
2.1 Hard margin formulation
2.2 Soft margin formulation 000000
2.3 Dual formulation oL

2.4 Primal and Dual variables
2.5 Kernel tricko

3 Feasible Primal-Dual SVM
3.1 Interior point methods
3.2 Primal-Dual Method for QP
3.3 Primal-dual Method for Dual SVM
3.4 Pseudocode
3.5 Parameters’ Initialization
3.6 Starting Point
3.7 Primal-dual search direction
3.8 Stepsize Choice
3.9 Convergence condition L.

4 The quadprog Solver in MATLAB
4.1 Mapping the SVM Dual to a Generic QP
4.2 The interior-point-convex Algorithm
4.3 Differences with our implementation.

5 Multiclass SVM
5.1 Multiclass Approaches
5.2 One-vs-Rest approach
5.3 Improvementso

6 Experiments
6.1 Description of Experiments
6.2 Binary class
6.3 Small and Medium sized Multi classes
6.4 Large multi classes oL

CONTENTS 2

7 Appendix 31
7.1 KKT system of Primal-Dual SVM 31
7.2 Centering problem 35

7.3 Datasets 37

Chapter 1

Introduction

1.1 Description of the task

This report explores two different optimization algorithms applied to a ML model.

The ML Model is a Support Vector Machine-type approach with linear kernel
for multi-class classification, using the standard One-to-Rest approach.

The first Optimization Algorithm is an algorithm of the class of interior-point
methods applied to the dual formulation of the SVC.

The second optimization algorithm is a general-purpose solver applied to an
appropriate formulation of the problem.

No off-the-shelf solver will be used, save of course for the second algorithm.
Specific discussion will be provided about if and how solving one training problem
in the One-to-Rest approach may provide useful solution that may help in solving
the others.

Chapter 2

SVM Problem Formulation

The goal of this chapter is to describe the Support Vector Machine and use the
Lagrangian dual formulation in order to define the optimization task as a quadratic
programming problem.

2.1 Hard margin formulation

The Support Vector Machine model use an hyperplane H to compute the predic-
tions with the aim of classifying the data in the correct class. In particular, H is
defined by a vector of parameters w = wy,ws, ... and a bias b. In fact, it can be
written as

H(z) =w'x+b=wx +wwy+...+b

Note that y is the vector that contains the labels corresponding to the class of
each point. In the simplest formulation of the SVM, the points can be classified
only in two different classes, represented by the label +1 for one class and —1 for
the other. As a consequence, the vector y containing the actual classes is

yl = [+1,41,..] =y = £1

The margin M is the distance from the closest point x; of the dataset to the
hyperplane H. It can be computed as

The support vectors xg, are exactly those points on the margin, in other words
the points (or point) closest to the hyperplane. To simplify the problem, it is
possible to define a new hyperplane H, where the new parameters with respect to

the previous ones are w = # and b = % This allows to set the value of

H(xs,) = 1. Note that these steps can be done WLOG (Without loss of generality).

CHAPTER 2. SVM PROBLEM FORMULATION 5

Now, the margin can be rewritten as

The idea of the SVM model is to find the hyperplane H that maximizes the
margin M. The objective can function of the optimization problem therefore is

max M (xg,) = maXL = min ||w|| = min ||w]||?
w,b w,b ||W|| w,b w,

Now the constraint. In this basic formulation, misclassification is not allowed,
for this reason, the actual class y and the predicted class y using the hyperplane
H(r) = wl'x + b must have the same sign. Note that y; = £1 and H(z) > 1,
because H was designed to have a minimum value of 1 given by the support vectors.
The constraint is then

y-g>l=y (Hx)>1=y (Wx+b)>1

Together, the objective function and the constraint of what is called "Hard
Margin SVM” is

min ||W||2
b

)

st oyi- (Wl +b)>1 Vie{l,...n}

The vector of weights w and the scalar b solving the problem are the values
that will be used in the classifier w/x + b

2.2 Soft margin formulation

In the "Hard Margin SVM” just described, misclassification was not allowed. How-
ever, in real-world dataset, it can happen and it is important to allow a certain
amount of it. The first change must be made in the constraint

yi - (whz; +0) >1-¢

The & > 0 serves as a threshold to allow misclassification, because now y and ¥y
can have different sign. Note that there is a different &; for each point. However,
¢ must be as small as possible and to reach this goal it is sufficient to add > &; in
the objective function which is being minimized. Furthermore, a constant value
C can be added to change the impact of £ into the objective function. The final
formulation of the "Soft Margin SVM” is

N
min ||w||* + C> &
w,b,& p

s.t. ;- (WTXZ' +b)>1-¢
§& =0

CHAPTER 2. SVM PROBLEM FORMULATION 6

L2/

>

58 4

4
Figure 2.1: Hard Margin SVM from Wikipedia

Or, more often, expressed as follows, including 3 1 for simplifing the gradient.

1 N
mli)% EWTW +C> ¢ (2.1)
w,0, Z
s.t. ;- (WTXZ' + b) >1-¢

& >0

2.3 Dual formulation

For a convex optimization problem with inequality constraints

min fo(z)

s.t.)<0 i=1,..m
=b,

filz
Ax
the Lagrangian Dual problem is

max g\ v)
st A >0 i=1,...m (2.2)

The function g(\, v) is called Lagrange Dual function and is defined as

g\ v) = mf(fo +Z>\fz fj x—b)

J=1

= irxlfﬁ(x,)\,y). (2.3)

CHAPTER 2. SVM PROBLEM FORMULATION 7

Since (2.3) can be used as a lower bound for (2.1)(lower bound property), we
aim at maximizing it through the Dual Problem (2.2). Furthermore, if all the
conditions for strong duality holds, a optimal solution of the Dual Problem is also
a optimal solution of the Primal Problem. The goal of this section is to derive the
Lagrange Dual function in order to write the Lagrange Dual problem (2.2) that
will be used in the solver. Then, the (2.1) variables will be obtained from dual
variables.

The KKT conditions of a generic convex problem are

VL(z,\,v)=0 gradient condition
fi(z) <0 primal feasibility
A >0 dual feasibility
Aifi(x) =0 complementarity condition

Back to the primal formulation of the SVM problem, the Lagrangian £ can be
written as

£lw.b€.0,0) = Iwl + €36
3o — w0+ (1-6)) + 2 A6

note that o; > 0 and 3; > 0 are the Lagrangian multipliers.

With the appropriate rearrangements, we write the equalities of the KKT con-
ditions:

w— Y a;yix; =0 gradient condition (w) (2.4)
i=1
— Z a;y; =0 gradient condition (b) (2.5)
—a;— B =0 gradient condition (&; Vi) (2.6)

;i (yi(wx; + b) - (1-&))=0 complementarity cond. (o; Vi) (2.7)
Bi& =0 complementarity cond. (5Vi) (2.8)

CHAPTER 2. SVM PROBLEM FORMULATION 8

We can use (2.4) and (2.6) into the Lagrangian £ as follows:

1 n
= gllwl? + 024

m

+Z%<%WXﬁ® (1-9) +3A(-6)

1

T
Z QY Y X X5 — Z QYW X
1,7

—bZaZyﬁ—ZaH-CZ& > ik — 3 Biki (2.9)

Z QO Y XX — Z aiyi(oyx5)x; — 0 + Z o+ 0
ij

Z CGOYY XX — Z CGOGYY XX+ Y
) j ;)

Z O 0GY Y XX + Z (07)
irj

For the sake of completeness, we write also the inequalities of the KKT for
primal and dual feasibility:.

yi - (Wix;+0)—1+&>0 primal feasibility (misclass)

§& >0 primal feasibility (&)
a; >0 dual feasibility («) (2.10)
Bi >0 dual feasibility (/) (2.11)

Writing (2.6) as 3; = C' — «; with ; > 0, we can replace (2.11) with «; < C.
Together with (2.10), we will use the constraint 0 < a; < C.

Observe that the stationarity constraint (2.5) was not used in the calculations for
the new objective function, hence it will be added to the Dual Problem as well.

Now, we can write the Dual problem for the SVM problem as max, £(«)

max Z o — Z QO Y5Y <X27 X]>
) 1,]

s.t. Z Y,y = 0 (212)
i=1

Although the dual originates from a maximization problem, in practice we will
write it as a minimization problem of the negative dual function.

CHAPTER 2. SVM PROBLEM FORMULATION 9

2.4 Primal and Dual variables

Once the dual problem is solved and a* is found, how to build back the primal
variables (w*, b*, £*)?

First, w* can be obtained from the gradient condition (2.4) as

n
W = Z OGY X
i=1
Second, b*, that is a scalar, needs some reasoning. If we look at the comple-
mentary slackness (2.7), we observe that:

o if a; = 0, the constraint (2.7) is inactive;

o if a; > 0, the constraint (2.7) is active; this happens when y; - (wI'x; + b) =
1 —&;

o if ; > 0 and «o; < C, the constraint (2.7) is active and, from (2.6) we have
B; > 0. This forces also the other complementarity constraint (2.8) to be
active, meaning & = 0, and now we can write (2.7) as y; - (Wlx; + b) = 1.

From the last point, we derive the following equation valid for points where 0 <
a; < C, given (y;)* = 1 with y; = +1

v (Whx £) =1

yi- W Xi+yi-b=1

WX+ b=y,

b=y — W' x,
It is important to clarify that these values for the primal variables are valid only
if the KK'T are respected, i.e. optimality is reached.

There is actually a smarter, and much more precise, idea to obtain b. Since the
path just described gets only an approximate value for b, the resulting primal-dual
gap will suffer due to numerical reconstruction of primal variables, in particular the
mean for b. Alternatively, we can observe from (2.9) that the role of b is exactly the
role of the scalar Lagrangian variable for the equality constraint >1' ; y;a; = 0 in
(2.12). If this Lagrangian multiplier, that in the following sections will be called v,
is available, like in primal-dual solvers described in this report where v is computed
directly, it can be reused as b without estimating it from support vectors, i.e.

b=v
Finally, £ can be recovered from (2.8) with

& = max(0,1 — (WTXZ' +b)).

CHAPTER 2. SVM PROBLEM FORMULATION 10

2.5 Kernel trick

An important upgrade in SVM classifiers is the use of kernels in the dual formula-

tion. In particular, in the objective function, the dot product z;x;, which results

in a linear classifier, can be replaced with a nonlinear kernel function K (z;x;).
The result is a more general formulation of the dual:

«

1
min 5 Z OdiOdjyiyjK(JJij) — Z (0%

(2]
st. 0<q; <C
n
>y =0
i=1

The four basic kernels are:

o linear: K(x;,x;) = X!x;.

« polynomial: K(x;,x;) = (yxI'x; +7r)% v > 0.

« radial basis function (RBF): K(x;,x;) = exp(—||x; — x;[|*), v > 0.
o sigmoid: K(x;,x;) = tanh(yx/x; +r).

Here, v, r, and d are kernel parameters. This report will be focused on the
linear kernel.

Chapter 3

Feasible Primal-Dual SVM

3.1 Interior point methods

In this chapter, we start by introducing Interior Point Methods (IPM), a class of
algorithms fundamentally distinct from traditional approaches. It was introduced
by Karmarkar in 1981, IPMs were later developed into a comprehensive framework
by Nesterov and Nemirovski in 1994.

Convex optimization problems that we aim to solve with the interior-point
methods are in the form

minimize fo(x)
z)

subject to fi(x) <0, i=1,...,m (3.1)
Ax =0,
where fo,..., fm : R® = R are convex and twice continuously differentiable, and

A € RP*™ with rank A = p < n. We assume that the problem is solvable, i.e., an
optimal z* exists and we denote the optimal value fo(z*) as p*.

We also assume that there exists x € D that satisfies Az = b and f;(x) < 0
for e =1,...,m, in other words, the problem is strictly feasible. This means that

Slater’s condition holds, therefore strong duality holds. So there exist dual optimal
A* € R™ v* € RP, which together with z* satisfy the KKT conditions. [1, §11.1]

Az* = b, f;(x¥) <0, i=1,...,m
S >0
Vfo(z*) + X0, MV fi(x*) + ATy =0
Al fi(x®) =0, i=1,...,m.

Interior-point methods solve the problem 3.1 (or the KKT conditions (3.1) by
applying Newton’s method to a sequence of equality constrained problems, or to
a sequence of modified versions of the KKT conditions.

In order to solve the IPM problems, there are several methodologies, but pri-
marily including the Barrier Method and the Primal-Dual Method.

11

CHAPTER 3. FEASIBLE PRIMAL-DUAL SVM 12

o Barrier Method employs logarithmic barrier functions to manage inequal-
ity constraints, transforming constrained optimization problems into uncon-
strained problems.

o Primal-Dual Method optimizes both the primal and dual formulations of the
problem, facilitating a more comprehensive solution strategy. These founda-
tional approaches leverage techniques such as duality theory and Newton’s
method to ensure efficient convergence toward optimal solutions.

For this report, we will concentrate our efforts on the primal-dual method.

3.2 Primal-Dual Method for QP

The dual formulation of SVM problem can be seen as a Quadratic Problem (QP)
with an equality constraint and a box-constraint. For this reason, in this chapter
we will explore how to deal specifically with this type of problem.

minimize %xTQJ: + qx
subject to Ax =b (3.2)
0§x1§ul, izl,...,m,

Primal-dual interior-point methods are a class of algorithms used to solve convex
optimization problems, closely related to barrier methods but with key differences
that often make them more efficient in practice.

Unlike the barrier method, which distinguishes between inner and outer iter-
ations, primal-dual methods perform all updates within a single iteration loop,
simultaneously updating both primal and dual variables.

The search directions in primal-dual methods are derived from Newton’s method
applied to the perturbed Karush-Kuhn-Tucker (KKT) conditions, tailored to the
logarithmic barrier formulation.

An important characteristic of primal-dual interior-point methods is that iter-
ates need not remain feasible throughout the optimization process.

In Algorithm 1, we present the framework of primal-dual interior-point method
for to the standard convex optimization setting. In the following sections, a tai-
lored vesion for the SVM problem will be expored.

3.3 Primal-dual Method for Dual SVM

The dual SVM optimization problem can be expressed as a Quadratic Programming
(QP) problem. The objective is to find the optimal Lagrange multiplier ov. We
use the formula (2.12):

CHAPTER 3. FEASIBLE PRIMAL-DUAL SVM 13

Algorithm 1 Primal-Dual Interior-Point Method

1: Initialize primal and dual variables, and set centering parameter p
2: while not converged do
3: Obtain search direction from perturbed KKT conditions

4 Choose step size
5 Update primal and dual variables
6: Reduce barrier parameter u
7: end while
1 n n n
min 3 Z Z oYy K (@,) — Z o
i=175=1 =1

n
subject to Y a;y; =0,
i=1

0<a;<C, Vi=1,...,n

In this chapter, we follow a common notation in optimization papers, replacing
the dual variable a with z. This change is necessary to avoid confusion with the
matrix A while using uppercase letters as diagonal matrices for variables (e.g. Z
= diag(z)).

We rewrite the problem as

min %ZTQZ —elz
subject to yTz =0
0<z<Ce

Here, we recall that () is the Kernel Matrix obtained from a Kernel Function
(2.5); e is the vector of ones of dimension n; C is the hyperparameter that define
the cost of misclassification.

The choices regarding Lagrangian form and multipliers’ notation reflect those
in [1, §5], i.e. \; are the Lagrange multipliers for inequalities, while v are those

related to equalities.
The Lagrangian relaxation, that will be useful in the following sections, is

L(z, A, A, v) = ;ZTQZ — el 2+ 0T (y"2) + AL(=2) + A\L(2 — Ce) (3.3)

3.4 Pseudocode

The pseudocode can be expressed as follows:

CHAPTER 3. FEASIBLE PRIMAL-DUAL SVM 14

Algorithm 2 Feasible-start primal-dual interior-point method for SVM dual

1: Initialize feasible variables: o, v, A_, A4, such that all constraints are satisfied

T T
Al A >0, € (0,1)

2: Initialize parameters: py =
3: while gap, > €4,p do
4: Compute surrogate gap:
gap, = ALz + AL (Ce — 2)
5: Solve the KKT system to get primal-dual search directions
Az, Av, AN, ANy
6: Compute maximum step length ny. to preserve strict feasibility, i.e.

A +nAXN_ >0, A +nAX. >0, z+nAze (0,0)"

and set step length: 1 < 0.9995 - Niax

7: Update variables:
z2 4 2+ nAz
v v+nAv
Ao — A +nAl
AL A +nAN
8: Reduce central path parameter:

jL 4= op

9: end while

CHAPTER 3. FEASIBLE PRIMAL-DUAL SVM 15

3.5 Parameters’ Initialization

In the literature, different heuristics can be found regarding the initialization of the
Interior Point parameters, i.e. u and o. We follow [4], which lead to the following
choices.

We defined p as the barrier parameter, more appropriately called the central
path parameter. We know that, during the iterations, only the complementarity
conditions are violated:

Mz=pe, M (Ce—z) =pe, wherep—0

Thus, we have the formula to calculate to update the value of 1 as below, which
uses the centrality gap as numerator and the number of inequalities m = 2n as

denominator:
2N+ (Ce—2)TA,

fo =

2n
Regarding the reduction of yu, i.e. o different ideas might be implemented. The
simplest is to use a parameter o = % where m is the number of inequalities.

Alternatives involve Mehrotra-s Predictor-Corrector or Centrality-based updates
[3]. We decided to explore in our experiments values of

o€ [0,1].

3.6 Starting Point

Compared to the general QP described before (3.2), the dual SVM problem can
be easily initialised with a feasible point.

Considering the Lagrangian (3.3), we need to initialize the following dual vari-
ables:

e A_ >0 for the lower bound «a; > 0,
e A, > 0 for the upper bound «; < C,
« v € R for the equality constraint y” z = 0.

Given the primal problem, the vector z € R” is feasible for the dual SVM
problem if it strictly satisfies the box constraints (inequalities): 0 < z; < C' Vi =
1,...,n

Given the Lagrangian dual, we can choose strictly positive dual variables:

()\,)Z =¢e>0, ()\,)Z =e>0 (e.g., €= 01)

CHAPTER 3. FEASIBLE PRIMAL-DUAL SVM 16

In practice, for interior-point methods, choosing any strictly feasible z € (0, C)"
(i.e. respecting primal feasibility), and setting small positive values for A_ and A
(i.e. respecting dual feasibility), is sufficient.

However, in a feasible-start primal-dual, we want the primal and dual residuals
to be zero already at the first iteration. This means an initial point that satisfies

yla=0, V.L=Qz—e—vy— A+, =0

For example, in order to satisfies both the box constraints and the equality
constraint with z, our choice is:

{O for the smaller class
Zi =

2
class ratio %, for the larger class

no instances smaller class
no instances larger class °

where class ratio =

For what concerns the dual variables, to respect the stationarity condition, we
can set for simplicity v = 0, which leads to —A_ + A, = e — Q2. Now, adding a o
on both sides to ensure non-negativity of dual variables gives us

v=0, (A); =max(—(e—Qz2),0)+6, (), =max(e—Qz,0)+J

The value of § should not be too small to ensure that the initial point lies well
in the interior of the feasible region. In practice, we consider values like § = 1 or
0 = 10.

3.7 Primal-dual search direction

The following derivation of the search direction is ours, expanding the lecture
slides. In this section, only relevant partial results are reported, the full derivation
can be found in the Appendix 7.1. A similar approach can be found in [7].

Instead of solving the original problem, we aim at iteratively (and approx-
imately) solving a modified problem with a barrier term connected to the in-
equalities. Given this new "barrier problem” (also called "centering problem”),
rather than the original KK'T system, the idea is to take one Newton step to solve
a perturbed version of the KKT conditions (also called "centrality conditions [1,
p. 11.2)7) for (3.3), then reduce the perturbation and iteratively solve again until
convergence. More about the central path can be found in the Appendix 7.3.

Therefore, we now consider the optimality conditions of the centering
problem. Inequalities will be considered when taking care of the stepsize, on
the other hand, to calculate the step direction, we focus on equalities writing the

CHAPTER 3. FEASIBLE PRIMAL-DUAL SVM 17

matrix form of the perturbed KKT. Since we do not aim at an exact solution of the
system, for computing a Newton step, we will use a linearized version of the
KKT removing the bilinear terms AA_Az and AA;Az. In the following system
and in later steps, note that U := diag(Ce) and A = y':

Q AT -1 I Az T,
A 0 0 0 Av Tnu
A0 Z 0 ||aa]|T [rm (3-4)

AL 0 0 U-2Z| AN iy

Given that we removed the bilinear terms, we have:

r.=—(Qz—e—A_+ A +yv)
ry = _(yTZ)
Tim = —()_Z - :ue)
(

After some calculations, we can build the augmented system as
H AT [Az] [r.
A 0| |Av| |r,|°

where

H=Q+Z'"W_+{U-2)"Ay

A=y
re=—(Qz—e+ylv—puZ e+ pu(U - Z) te)
n=—(y"?)

We observe that the term H — (@) is diagonal and strictly positive, hence H is
strictly positive definite and nonsingular.

Also, we can work on r. using some considerations. In the central path, we
expect the stationarity constraint to be respected (i.e. VL(z,A_,\;,v) = 0,
meaning Qz — e + y'v = +A_ — A;. Hence, we can rewrite r. as

TC:—)_+>\++’Y

Furthermore, the precomputed v = uZte — u(U — Z)~te just introduced in the
steps above, we be written in a different form that can greatly improve numerical
stability,

U; — 221‘

Vi =M Z (= =) (3.7)

CHAPTER 3. FEASIBLE PRIMAL-DUAL SVM 18

The augmented system can be further simplified obtaining the normal equa-
tion
MAv = Ty,

eliminating Az through block elimination, where emerged the Schur’s Complement
M := AH AT,
In some papers, such as [7], the matrix H is written as Q + ©~!, given 7! :=
Z7'A_ + (U — Z)'A, which leads to write M := A(Q +©~1)~1AT,
Considering the stable form of v (3.7), we can write the terms of the normal
equation MAv = ry as
M=AH AT
ry=AH 'r.+ ATz

Once Av is computed, the other deltas can be obtained looking back at (3.7)

Az=H Y r,— ATAv)
A_=pZ e — ZIN_Az— M
AN, =pu(U—2) e+ (U—2) A Az — Ny

3.8 Stepsize Choice

In the feasible-start primal-dual method, the iterates always satisfy both the pri-
mal and dual feasibility conditions. They can be recovered from the full KKT
conditions available in the Appendix 7.1.

As a consequence, the feasible stepsize can be computed as

Mmax := min{l, min (— (A-);) min (_ (A+)s >
TiAGC)i<0 \ AAD);) Tea0mi<o \ A(AL))

. 2; . (O =%)
min | — min
1:Az;<0 AZ’L ’ :Az; >0 AZZ
Then, in order to remain within the interior of the feasible region, we use a
common reduction factor with the additional step

1 < 0.9995 - Tmax

This section is radically different in infeasible-start methods (e.g. [1, §11.7]),
where the iterates may violate constraints and residuals are used to declare con-
vergence. See also the Chapter on quadprog.

3.9 Convergence condition

There are at least three different gaps that could be used in the algorithm. They
are described in [1, §11.7.2][3].

CHAPTER 3. FEASIBLE PRIMAL-DUAL SVM 19
The first is the true primal-dual gap, given the objective functions

1 n
V= iaTQO(_eTOéa p = EHwHZ_}—CZgZ’
1=1

It reflects optimality independently of the barrier parameter pu:

gapp =P (_d)7

where v and p are dual and primal objective values, respectively. Observe that we
use the dual with a negative sign because both the primal and dual formulations
are treated as minimization problems. Then, at optimum there values have simply
opposite signs but (approximately) same value, since strong duality holds. How-
ever, we observe that obtaining the value p is quite expensive because it requires
the original data to recover the value od w. For this reason, we explore now more
efficient surrogate gaps that can be used.

Since we start from a feasible point and preserve feasibility at every iteration,
the primal residual (3.6) and dual residual (3.5) remain zero. Nevertheless, the only
gap from solving the centering problem exactly is the complementarity constraint,
thus we define the complementarity gap as

gap. = \oa + 2\ (Ce — a)

Finally, if *(u) is the exact solution of the centering problem, another surro-
gate gap can be obtained simply as

gap, =m- .

The reason behind this expression can be found in the Appendix 7.3. However,
since in our implementation we reduce p manually with the reduction factor o, it
is not meaningful to choose gap, as the flag for convergence.

Furthermore, since we do not aim at an exact centering step, it is not safe to use
it, on the other hand, it can still be seen as a target and used to tune the hyperpa-
rameter p. In order to understand how well the centering step is computed, and
hence how close we are to the central path, we might look at residuals of (3.4). In
particular, when the residuals are close to zero, we expect gap. ~ gap,. In prac-
tice, they cannot be the same, since the KKT system is linearized and an exact
solution for the problem cannot be achieved. Comparing this value gap, with the
actual primal-dual gap gap, or with gap. may help evaluate whether p is being
reduced appropriately. For instance, the reduction factor o could be adaptively
adjusted, decreasing it only when gap,, is reasonably close to d — p.

Our choice is to use gap, for a given tolerance tol, e.g., 107°. It is the best com-
promise in terms of reliability and efficiency. A much more detailed explanation
on the three gaps can be found in the Appendix 7.3.

Chapter 4

The quadprog Solver in
MATLAB

4.1 Mapping the SVM Dual to a Generic QP

As shown in Chapter 3, the dual SVM training problem is a special case of a
quadratic program (QP). Consequently, any off-the-shelf QP solver can be used to
obtain the optimal Lagrange multipliers cc. We selectedMATLAB’s quadprog.
According to the documentation [6]: quadprog is a solver for quadratic objective
functions with linear constraints. It finds a minimum for a problem specified by

1 Az < b,
min §$TH33 + f'x such that { Aeqz = beg, (4.1)
Ib < x <ub,

where H, A, and Agq are matrices, and f, b, beq, 1b, ub, and x are vectors.

For the soft-margin SVM, the dual takes the form

1 Ta=0
min —a’Qa —e’a such that v (4.2)
a2 0<a<CCe,

where () = vy, K(x;,%,) and e is the all-ones vector.

Mapping (4.1) onto (4.2) is therefore straightforward:

SVM variable | quadprog parameter
Q H
—e f
none A'b
T
y Aeq
0 beq
0, Ce 1b, ub

20

CHAPTER 4. THE QUADPROG SOLVER IN MATLAB 21

4.2 The interior-point-convex Algorithm

quadprog’s default engine for convex problems is interior-point-convex. Its
internal workflow can be summarised as follows:

1.

Presolve / Postsolve. Eliminates redundancies, detects bound inconsisten-
cies, and scales the problem.

Initial-point generation. Starts from x0 = 1 (then projects to the box
constraints via (u+1)/2) and applies a single predictor step to land near the
central path.

. Predictor—Corrector loop. Uses Mehrotra’s predictor—corrector scheme to

solve the perturbed KKT system.

. Stopping tests. Monitors primal and dual residuals, together with comple-

mentarity.

. Infeasibility detection. Uses a function to measure infeasibility, if it grows

too large, the algorithm stops.

4.3 Differences with our implementation.

Our own solver diverges from quadprog in two key aspects:

o Feasible vs. infeasible path. We enforce strict primal feasibility at each

Newton step, whereas quadprog allows temporary infeasibility and relies on
corrector steps to drive the iterates back toward feasibility.

KKT refinement. quadprog performs multiple corrector passes after every
predictor step, effectively refining the Newton direction and enabling longer
step sizes. Our solver currently uses a single Newton system solve per itera-
tion, which explains the greater iteration count observed in 6.

A further comparison of both approaches —including their practical impact on
runtime and solution — is presented in 6.

Chapter 5

Multiclass SVM

5.1 Multiclass Approaches

As we have seen in previous chapters, the Support Vector Machine has been de-
signed for binary classification. However, some strategies have been developed to
adapt the model for classification of multiple classes. A comparison can be found
in [5].

Experience has shown that constructing several binary classifiers is a better
solution than solving a larger optimization problem [2]. The most common ap-
proaches are

1. one-vs-rest (OVR), also called one-vs-all: among the classifiers that distin-
guish between one label and the rest, the one with the highest score assigns
the class;

2. one-vs-one (OvO): each binary classification model predicts one class label
between every pair of classes and the model with the most predictions or votes
is predicted.

While OvO is probably the most common approach in recent implementations
[2], we will describe the first approach that was presented in literature, i.e. OvR.
Usually the performance are similar. Additionally, we will explore ideas on how
solving one training problem in the One-vs-Rest approach may provide useful so-
lutions that may help in solving the others.

5.2 One-vs-Rest approach

As already mentioned, One-vs-Rest is probably the earliest implementation of
multiclass SVM. It constructs & SVM models where £ is the number of classes,
compared for example to OvO where it would be required to build k(k — 1)/2
classifiers.

22

CHAPTER 5. MULTICLASS SVM 23

The mth SVM is trained using positive labels for the mth class and negative
labels for the rest. At the end of all the training sessions, we will obtain k& decision
functions (2.1).

Then, each sample x; will be labeled with the class that resulted in the highest
value of its decision function, i.e.

class of x; = argmax,,,_; . fm(X:)

In practice, the formulations and solvers described in previous chapter can be
used in the loop that traverses the classes to obtain k binary classifiers. Hence,
k quadratic problems (2.12) will be solved and then the primal variables will be
reconstructed to define the mth classifier.

It is important to mention also some issue related the this approach. In par-
ticular, OvR may produce ties (two classifiers vote positive) or rejections (all vote
negative).

5.3 Improvements

The ideas described in this section are related to how solving one training problem
in the One-vs-Rest approach may provide useful solutions that may help in solving
the others. The two main strategies that we propose are the shared kernel matrix
and the warm start.

First, it is easy to observe that the apparently independent training sessions of
the kth classifiers share the kernel matrix (2.5). This fact permits to reduce the
training time by pre-computing it before the loop that trains the different models.

Another ideas that is worth mentioning is the warm start, i.e. using previous
optimal dual variables as initialization for the next classifier’s training. If the two
classes are similar, we expect similar hyperplanes and therefore a very fast conver-
gence. However, additional care might be required in case of constraints violation.

Chapter 6

Experiments

6.1 Description of Experiments

In this chapter, we deal with input data. We developed the solver by Matlab
based on the theoretical parts at previous chapter named Ipsvm. We show our
experimental results on the primal-dual interior point method discussing the rela-
tion with the underlying theory, and at the end, we will compare the two different
solver approaches.

Besides our developed function, we generated also other sub-function to do the
ad-hocs tasks like data processing, print results, show plots of results,...The data
sets we used are described in detail at 7.3. Before calculation, we normalized all
inputs of X values by Z-score normalization. All of the experiments were run on
a laptop equipped with CPU 11th Gen Intel Core i5-1145G7 processor running at
2.61 GHz, with four physical cores, and 16Gb of RAM.

We assessed our solver and evaluated their performances with different types of
experiments. The Kernel with use for all was Linear Kernel. The starting point
was set as the input value of X. The convergence tolerance for Ipsvm (€) was le-8,
the maximum number of iteration was 200. All data sets were split into training
set and test set with the proportion 80:20. The values of C and o were varied
during the experiments.

6.2 Binary class

Firstly, We tested the Ringnorm data. It is an artificial dataset with two equidis-
tributed classes. We did two experiments. The first experiment was to check how
fast the method converges during iterations and how long it takes to run. We ran-
domly picked 2000 records from the dataset, keeping the same class proportions as
the original data. Then, we used the training set to calculate and solve the prob-
lem. We ran tests with two values of C: 1 and 10. The sigma value was changed
from 0.3 to 0.7, increasing by 0.05 each time. First, we calculated the optimal
points. Then, we used the results to compute the primal model and applied it to
predict the labels in order to calculate the accuracy.The purpose is to see how the

24

CHAPTER 6. EXPERIMENTS 25

speed of convergence and processing time change with different combinations of
these starting parameters. The results are shown in the figure 6.1.

nnnnnnnnnnn
wwwww

& §F ® § & 3 ® 3 ®

Parameter Combinations

Figure 6.1: Result of convergence with Figure 6.2: Convergence rate at Ring-
different parameters norm dataset with C=1, 0=0.4

When we implemented the calculation, the model with parameter C' = 1 gave
the accuracy 78% while C' = 10 gave lower a little bit 77.75%. In both C values, if
we increase the o value, the number of iterations and computation times increase
iteratively. It indicates that when o is higher, the model needs more iterations and
takes longer to converge. Furthermore, the computation time at C' = 10 almost
higher than C' = 1, and the number of iterations was higher too.

The figure 6.2 shows the convergence rate at the C' =1 and ¢ = 0.4, which are
the best parameters with the fast convergence rate and accuracy we have so far.

At the second experiment, we checked how accuracy and convergence rate
change with different sizes of datasets. We chose the parameters with C' = 1
and ¢ = 0.4. We ran the size of dataset from 1000 to 7400, with each iteration
increase 1000 records. The process to calculate is like the first experiment. The
result is showed as table below:

Table 6.1: Performance of the model with different dataset sizes (Ringnorm)

Size Iterations Processing Time (s) Accuracy (%)
1000 29 1.4076 73.50
2000 31 6.4036 76.75
3000 36 40.0516 74.00
4000 38 91.5723 77.50
5000 40 205.7210 76.20
6000 36 244.2114 7717
7400 (full-size) 37 360.3920 79.12

From Table 6.1, we can see that the processing time increases as the dataset
size grows. The increase is nearly linear. When the dataset becomes larger, the
processing time becomes much longer. The accuracy is around 74% — 79% and not

CHAPTER 6. EXPERIMENTS 26

different significantly. In this point, it indicates the model which were generated
based on the optimal results give the good performance on this dataset.

Next, we tested the model on two real datasets: German Credit and Pima
Indian Diabetes. We ran the calculation 10 times, and the results shown in Table
6.2 are the averages over the 10 experiments. In both datasets, we see that if we
increase the C and Sigma (o) value , the convergence rate and computation time
also increase.

Table 6.2: Performance of the model on Two Real Data Sets

Dataset Size Features C o Iters Time (s)

German 1000 20 1 04 36 2.502
Credit 1 05 37 3.305
1 07 69 4.826
10 04 42 2.672
10 0.5 43 2.889
10 0.7 82 6.149

Diabetes 768 8 1 04 27 1.040
1 05 37 1.726
1 07 70 2.249
10 04 32 2.486
10 0.5 42 1.977
10 0.7 81 3.628

6.3 Small and Medium sized Multi classes

In this experiment, we developed a function to work with multiclass classification.
We chose the One-vs-Rest approach, which means we pick one class at a time and
train a model to separate that class from the others. Thus, with n classes, we
need to build n classification models. The total processing time is the sum of the
processing times for each individual class. Finally, the overall accuracy is calcu-
lated as the average of the accuracies from each model used for classification. We
started with small and medium-sized datasets: the Segment dataset (2310 records,
19 features, 7 classes) and the Iris dataset (150 records, 4 features, 3 classes). We
tested several combinations of C and o values, and the top 3 results are shown in
table 6.3. In this experiment, we also used Matlab’s quadprog function to compare
its performance with our solver. Each test was run 10 times, and we recorded the
average results in the table.

CHAPTER 6. EXPERIMENTS 27

Table 6.3: Comparison between Ipsvm and quadprog on Multiclass Datasets

Dataset C o Ipsvm quadprog
Iteration Time (s) Iteration Time (s)
Segment 1 0.55 426 128.28 128 9.02
1 0.65 513 143.57 128 7.2
10 0.60 489 119.37 116 6.7
Iris 1 055 137 0.11 24 0.01
1 0.65 189 0.19 24 0.02
10 0.60 184 0.16 26 0.04

The models with high values of parameters give the longer processing time.
Besides that, the complex data set with higher size and features also take longer
time to calculation. Compare the result between Ipsvm function and quadprog.
All calculations by Ipsvm took longer time than quadprog. However, for the Seg-
ment dataset, Ipsvimn gave slightly better results, while for the Iris dataset, one
model at C' = 1, ¢ = 0.55 performed better with Ipsvm. Both solvers achieved
same accuracy under the same parameter settings. Overall, the results from both
methods were quite similar, with only small differences. Figures 6.3, 6.4 show the
convergence rate and the 3D plot of the best model on the Iris dataset. In conclu-
sion, the quadprog solver showed a faster convergence rate and shorter processing
time on both datasets.

cccccc

bbbbbbbbbbbbbbbb

VNI

||||||||

Figure 6.3: Convergence rate at Iris data Figure 6.4: 3D Plot of one of the binary
set classifiers for the Iris Dataset

We calculated the relative gap between the objective function values for each
class obtained using the Ipsvm solver and the quadprog solver. The formula we

used is:
|Epsvm - Fquadprog|

relative gap =
|F quadpr0g|

where Fi,gym are the dual objective function values calculated by Ipsvm solver,
Fiuadprog are the dual objective function values calculated by quadprog solver.
However, an similar relative gap can be obtained also using primal objective func-

CHAPTER 6. EXPERIMENTS 28

tions, as it can be verified in table 6.4and in the script comparing solvers.

We selected Segment and Iris, both with parameters C' = 1, 0 = 0.65 to evaluate
the relative gap for each class. The comparison results are presented in 6.4. In this
case, our solver and quadprog solver gave the same value of objective function, the
relative gap indicated 0 for all classes in datasets.

Table 6.4: Comparison of Ipsvm and quadprog fvalue results

Dataset Class Dual Relative Gap Primal Relative Gap

1 7.18745e-11 2.88093e-11

2 1.04806e-08 3.39144e-09

Segment, 3 1.16724e-11 1.55566e-11
Cc=1, 4 8.50459e-12 1.22756e-08
o =0.65 5 6.49975e-09 3.13019e-09
6 4.44314e-10 1.21434e-10

7 1.06688e-09 2.35080e-09

Iris, 1 1.89636e-10 4.62544e-09
C=1, 2 1.78472e-11 5.77988e-10
o=0.65 3 1.43408e-12 1.59530e-10

6.4 Large multi classes

In this section, we selected the shuttle data set to do the experiment. Because the
size is too large (58,000 records, 9 features, 7 classes) so we decided to choose a
part of them with 5000 records for the experiment. The sample data was chosen
randomly with stratified, make sure the ratio of each class is same as the original
part. We did the test with 4 combination of parameters, showed as table 6.5. We
also ran the quadprog solver to compare with ours.

Table 6.5: Performance of Ipsvm and quadprog on Shuttle Dataset (5,000 records)

C o Ipsvim quadprog

Iter Time (s) Acc. (%) Iter Time (s) Acc. (%)
1 06 450 2136.66 94.6 94 113.43 94.6
1 0.7 586 2786.51 94.6 94 99.57 94.6
10 0.65 575 2738.35 94.6 90 106.23 95.2
10 0.7 673 1983.77 94.6 90 57.22 95.2

At Ipsvm solver, lower o values gave fewer iterations and shorter processing
times. For the quadprog solver, both the processing time and number of iterations

CHAPTER 6. EXPERIMENTS 29

were significantly shorter than with Ipsvm. Overall, on the large dataset and across
different parameter settings, quadprog produced better results than Ipsvm. The
table 6.6 shows the comparison results of 2 solvers, at the paramerters C' = 1,0 =
0.6 and C' = 10,0 = 0.7. It indicates that the objective function values of both
solvers show the gap is very small, with the average objective gap at C = 1,0 = 0.6
is 6.8935e¢ — 07 and 8.949¢ — 04 at C' = 10,0 = 0.7 . We conclude that the Ipsvm
solver performs well on large multi-class datasets.

Table 6.6: Comparison of Ipsvm and quadprog results at Large dataset

-1.99866e+01 -1.99866e+01 2.68183e-07

Dataset Class Frpsvm Fouadprog Relative Gap
1 -3.74562e+02 -3.74562e+02 4.08646e-11
2 -6.00000e+00 -6.00000e4+00 4.35826e-08
Shuttle, 3 -2.40000e+01 -2.40000e+01 2.60919¢-11
c=1, 4 -1.22800e+03 -1.22800e4+03 3.04399e-13
c=06 b5 -1.59724e+00 -1.59724e+00 5.28073e-08
6 -1.99987e+00 -1.99987e+00 3.38052e-07
7 -7.96370e-04 -7.96373e-04 4.39068e-06
1 -3.45358e+03 -3.45358e+03 8.81859e-09
2 -6.00000e+01 -6.00000e+01 1.21150e-09
Shuttle, 3 -2.40000e+02 -2.40000e+-02 1.48124e-12
C =10, 4 -1.22800e+04 -1.22800e+04 1.22367e-12
c=0.7 5 -2.21136e+00 -2.21136e+00 1.62199e-09
6
7

-7.96368e-04 -7.91410e-04 6.26461e-03

Bibliography

(6]

[7]

Stephen P. Boyd and Lieven Vandenberghe. Convex optimization. en. Cam-
bridge, UK; New York: Cambridge University Press, 2004.

Chih-Chung Chang and Chih-Jen Lin. “LIBSVM: A library for support vector
machines”. en. In: ACM Transactions on Intelligent Systems and Technology
2.3 (Apr. 2011), pp. 1-27. 18SN: 2157-6904, 2157-6912. DOI1: 10.1145/1961189.
1961199.

Jacek Gondzio. “Interior point methods 25 years later”. en. In: Furopean Jour-
nal of Operational Research 218.3 (May 2012), pp. 587-601. 1SSN: 03772217.
DOI: 10.1016/j.ejor.2011.09.017.

Jacek Gondzio. “Interior Point Methods in Machine Learning”. In: Optimiza-
tion for Machine Learning. Ed. by S. Sra, S. Nowozin, and S.J. Wright. MIT
Press, 2011, pp. 331-350.

Chih-Wei Hsu and Chih-Jen Lin. “A comparison of methods for multiclass
support vector machines”. en. In: IEEE Transactions on Neural Networks 13.2
(Mar. 2002), pp. 415-425. 1SSN: 10459227. DOIL: 10.1109/72.991427.

MathWorks. Quadratic Programming Algorithms MATLAB quadprog. The Math-
Works, Inc. Natick, Massachusetts, 2024. URL: https://it.mathworks.com/
help/releases/R2024b/optim/ug/quadratic-programming-algorithms.
html.

Kristian Woodsend and Jacek Gondzio. “Exploiting separability in large-scale
linear support vector machine training”. en. In: Computational Optimization
and Applications 49.2 (June 2011), pp. 241-269. 1sSN: 0926-6003, 1573-2894.
DOI: 10.1007/s10589-009-9296-8.

30

Chapter 7
Appendix

7.1 KKT system of Primal-Dual SVM

The following derivation of the search direction is ours, expanding the lecture
slides.

In order to use uppercase letters as diagonal matrices for variables (e.g. Z :=
diag(z)). Additionally, in this appendix, we follow a common notation in opti-
mization papers, replacing the dual variable o with z, this is necessary to avoid
confusion with the matrix A. These changes leads to the following dual optimiza-
tion problem

min %zTQz —el'z
subject to y'z =0
0<z<Ce

The choices regarding Lagrangian form and multipliers’ notation reflect those
in [1, §5], i.e. \; are the Lagrange multipliers for inequalities, while v are those
related to equalities.

We start from the Lagrangian relaxation

L(z,_, Ay, v) = ;ZTQZ — el 2+ v (Y 2) + AL(=2) + M\L(2 — Ce)

Instead of solving the original problem, we aim at iteratively (and approxi-
mately) solving a modified problem with a barrier term connected to the inequal-
ities. Given this new "barrier problem” (also called "centering problem”), rather
than the original KKT system, the idea is to take one Newton step to solve a
perturbed version of the KKT conditions (also called "centrality conditions [1,
p. 11.2]”) for (7.1), then reduce the perturbation and iteratively solve again until
convergence. More in 7.3.

31

CHAPTER 7. APPENDIX 32

Therefore, the optimality conditions of the centering problem read

—2 <0 primal constraint (i)
z—Ce<0 primal constraint (ii)
ylz=0 primal constraint (iii)
Ao >0 dual constraint (i)
Ay >0 dual constraint (ii)
—A_ - (—2) = ue pert.compl. slackness (i)
At (2 —Ce) = pe pert. compl. slackness (ii)
Qz—e— A+ +yr=0 gradient of Lagrangian (7.1)

Applying the variables’ displacement for Newton, we obtain:

Az > —z primal constraint (i)
Az<Ce—z primal constraint (ii)
yIAz = —ylz primal constraint (iii)
AN > =X dual constraint (i)
ANy > =4 dual constraint (ii)
A+ AX) o (z+ Az) = pe pert.compl.slack. (i)
AL+ AN) o (Ce—2z—Az) = pe pert.compl.slack. (ii)
QAz — AX_ + AX; +yAv = gradient of Lagrangian

=—(Qz—e—A_+ Ay +yv)

Inequalities will be considered when taking care of the stepsize. Now, to calcu-
late the step direction, we focus on equalities rearranging with the goal of writing
the matrix form of the perturbed KKT, we write

QAz —e— AN+ ANy +yAv = —(Qz —e — A_ + Ay +yv)
JTAz = ~(y72)
AMAz4+ AN z=pe— A z+AXN_Az
A Az + AN (Ce—2z) = pe— A (Ce—2) + AN Az.

Since we do not aim at an exact solution of the system, for computing a Newton
step, we will use a linearized version of the KKT removing the bilinear terms
AN_Az and AX;Az. In the following system and in later steps, note that U :=
diag(Ce) and A = yT:

Q AT —I I Az r,
A 0 0 0 Av | |7
Al 0 Z 0 AXN_| |7

—A+ 0 0 U—-7 A>\+ Tlp

CHAPTER 7. APPENDIX 33

Given that we removed the bilinear terms, we have:

We can start solving from the last two constraints over AX_ and A\, yielding

AN_=puZ e —ZIA_Az— A
ANy =p(U—2Z) e+ (U—2)"Ay Az — A

Substituting into the first line of the matrix 7.1 and, given 7, = —(Qz — e —
A+ M +yTv), we will simplify A_ and A, from both sides

QAz +yT Av

—AX_ + AN, =r,
QAz +yTAv

—uZ e+ ZTIN_Az+ M

+u(U—2)e4+ (U—-2) "Ny Az — Ay =r,
QAz +yT Av

+Z N A2+ (U~ 2) A Az =,

where
Te = — (Qz —e+ylv—pZ e+ (U - Z)_le)

Together with the second line of the matrix 7.1, we build the augmented system
equations as
H AT] [Az e
4ol 1

H=Q+Z'"A_+{U-2)"Ay

Where

A= yT
roe= (Qz— e 44Ty — pZ e+ p(U — 2)e)
Ty = _(yTZ)

We observe that the term H — (@) is diagonal and strictly positive, hence H is
strictly positive definite and nonsingular.

CHAPTER 7. APPENDIX 34

Also, we can work on r. using some considerations. In the central path, we
expect the stationarity constraint to be respected (7.1) (i.e. VL(z,A_, A1, v) =0
, meaning Qz — e + y’v = +A_ — X,. Hence, we can rewrite r, as

o= Q2 — et yTv - pZ e+ u(U — 2)"10)
= (A =Xy —pZ e+ pu(U - 2)e)
= M+ +puZlte—p(U—-2)"e
= A+ A+
Furthermore, the precomputed v = uZ te — u(U — Z) e just introduced in the

steps above, we be written in a different form that can greatly improve numerical
stability,

1 1
Yi=po (- —
Zi U; — Z;
U; — 2 — 25

)

:'u'z-(ui—zi)

U; — 221'

A (7.2)

The augmented system can be further simplified obtaining the normal equation
MAv = ry eliminating Az as follows

HAz + ATAv =,
AAz = AH Y(r, — ATAv)
r, = AH 'r. — AH AT Av
AH'ATAv = AH Y. — 1,
MAv =17,
Using the block elimination, where emerged the Schur’s Complement M :=
AH AT we obtained MAv = ry.
In some papers, such as [7], the matrix H is written as Q + ©~!, given 7! :=
Z7'A_+ (U — Z)~'A, which leads to write M := A(Q +©~1)~1AT,
Considering the stable form of v (7.2), we can write the terms of the normal
equation MAv = ry as
M= AH AT
ry=AH ‘r.+ ATz

Once Av is computed, the other deltas can be obtained looking back at (7.1)
and (7.1)

Az=H Y r,— ATAv)
AN_=pZ e —Z7N_Az— A
AN =p(U—=2)te+(U—-2) A Az — Ay

CHAPTER 7. APPENDIX 35

7.2 Centering problem

In this section of the appendix, we explore the differences in the gaps that are
mentioned, i.e. the true duality gap, the surrogate gaps (centrality gap)and the
f1-gap).
In particular, the idea of central path is explored to get a deeper understanding of
how the primal-dual method is derived from the barrier method.

Guided by [1, §11.2.2], we derive the surrogate gaps that are used as convergence
conditions. Consider the centering problem, obtained from (3.1)

Hlxin ifo(l’) + (b(x)

subject to Ax = b, (73)

where we define the barrier function

its derivative

and p as the "barrier hyperparameter”, that in the primal-dual is more appropri-
ately called "centering parameter”.

This new equality constrained optimization problem has the following necessary
and sufficient optimality conditions, with the optimal solution x*(u)

i) Ax*(u) =0
it) I € RP st

0= fo(z +“Z_f

(2" T
i ())sz((1) + pA

We define the pair of dual variables

1

Ai(p) = _Mm

and it can be shown that they are dual feasible by writing the previous optimality
conditions with these variables. This step is crucial because if every central point
yields a dual feasible point, then it can be used as a lower bound on the optimal
value p*.

Given z*(u) solution of the centering problem, dual function can be expressed

CHAPTER 7. APPENDIX 36

as

g (), v (1)) = Z A () fiz™ () 4 v* () (Az (i) = b)

1 * ~ * _
— ol Z(M)m (1)) + po(Ax* () — b)
= fo(z* +Z1 —p+ -0

— fola (1) —m- .

The last equation shows that, if z*(u) is the exact solution of the centering
problem (7.3), the gap can be obtained simply as

gap, =m- ji.

Since we do not aim at an exact centering step, the safer way to compute this
surrogate gap (or centering gap) through the iterations is clearly

gapc—ZX" (1)) + v () (Az™ () = b) .
However, gap,, can still be seen as a target and used to tune the hyperparameter p.

In order to understand how well the centering step is computed, and hence how
close we are to the central path, we might look at residuals of (3.4). In particular,
when the residuals are close to zero, we expect gap. =~ gap,. In practice, they
cannot be the same, since the KKT system is linearized and an exact solution for
the problem cannot be achieved.

How is the gap of the centering problem (7.3) related to the gap of original
problem (3.1)?7 Weak duality states that the dual function g(\,v) set a lower
bound for fy(x), then for every feasible A > 0

g\ v) < folx)

g\ (), v* (1) < fo(z™)
fo(z* (1)) + gap, < fo(z")
fo(z* (1)) — fo(z") < gap...

We just showed that gap. = X7 A (p) fi(x*(p)) + v*(p) (Az* (1) — b) can be used
as an upper bound for the duality gap of the original problem. Once the centering
problem is solved well enough, gap, could be replaced by gap,,.

From a KKT system perspective, the only difference between the KKT condi-
tions of the original problem and the centrality conditions (3.4) is that the com-
plementarity condition —\; f;(z) = 0 is replaced by the condition —\; fi(z) = u. In
particular, for small p, 2*(u) and the associated dual point A*(u), v*(u) ‘almost’

CHAPTER 7. APPENDIX 37

satisfy the KKT optimality conditions of the original problem.

To sum up, in interior-point methods, several notions of optimality gap are used.
The gap,,, defined as m - p1, holds when x* (1) exactly solves the centering problem;
it represents the ideal duality gap along the central path. In practice, however,
iterates are not exactly central. The centrality gap, given by 7 \; fi(2)+vT (Az—
b), evaluates the residual gap at the current iterate and is used as a stopping
criterion. Finally, the true duality gapgap, is defined as fy(z) — g(\, v) when the
dual function is evaluated at a feasible (A, 7). Only when (z, A, v) lie on the central
path do all three expressions coincide.

7.3 Data sets

To investigate what performance results can be expected in application. We used
4 standard data sets.

« Ringnorm: As introduced by Breiman (1998), this dataset contains 7,400
instances described by 20 numerical features. The data are divided into two
equidistributed classes, each generated from a multivariate normal distribu-
tion with different variance-covariance matrices.

o Pima Indian Diabetes: This real-world medical dataset contains 768 records
with 7 features and binary class labels. It was from the UCI Machine Learn-
ing Repository and is commonly used for evaluating classification models on
realistic data.

e German Credit: a dataset contains on 20 variables and the classification
whether an applicant is considered a Good or a Bad credit risk for 1000 loan
applicants. It is a dataset used for SVM evaluation and has been preprocessed
and distributed via the LibSVM dataset collection.

e Segment: a dataset is an image segmentation database similar to a database
already present in the repository (Image segmentation database) but in a
slightly different form. It has 2310 records, with 19 features and 7 classes.

e Iris: Derived from the classic Iris dataset. This subset includes 150 records
with 4 features, restricted to three classes for binary classification tasks.

o Shuttle: a dataset has 58,000 records, with 9 features and 7 classes. Mainly in
type of numerical data. It was propsed by StatLog and all data were processed
by LibSVM dataset collection.

All datasets are publicly available from the LibSVM data repository: http:
//www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/.

